

eRD18 - Precision Central Silicon Tracking & Vertexing for the EIC

P. Allport, S. Bailey, L. Gonella, <u>P. Jones</u>, P. Newman

eRD18: Proposal

To develop a detailed concept for a central silicon vertex detector for a future EIC experiment, exploring the potential advantages of HV/HR-CMOS MAPS technologies

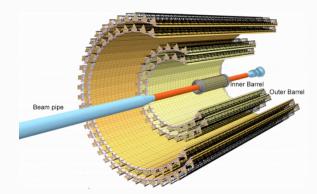
Physics motivation

Open heavy flavour decays – **high position resolution**Precision tracking of high Q² scattered electrons – **low mass**

WP1: Sensor Development

Exploit on-going R&D in Birmingham into HV/HR-CMOS MAPS to investigate potential solutions for the EIC

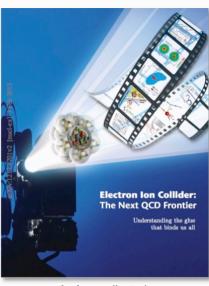
WP2: Silicon Detector Layout Investigations


Performance requirements: numbers of layers, layout and spatial resolution of the pixel hits

Background: State-of-the art MAPS

STAR Heavy Flavour Tracker (HFT) at RHIC

ALICE Inner Tracking System (ITS) Upgrade at LHC



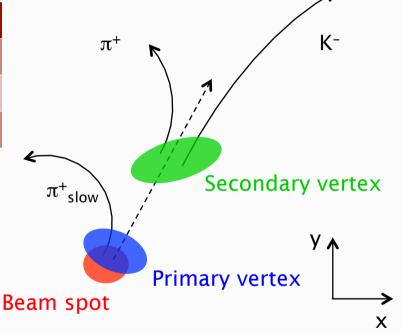
- Key features of MAPS
 - Small pixel size (down to 20 μm x 20 μm)
 - Low power (< few hundred mW/cm²)
 - Low material budget (~ 0.3% X₀ per layer)
 - Moderate radiation hardness (~Mrad, 10¹³ 1MeV n_{eq}/cm²)

₁/cm²)

Charm observables in the EIC White Paper

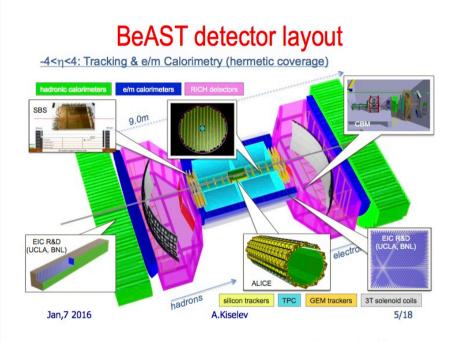
- Leading order charm production process is γg fusion
- Provides sensitivity to:
 - I. The gluon contribution to spin of the nucleon
 - Charm sensitive to ∆g in e-p scattering
 - II. Physics of high gluon densities and low-x in nuclei
 - Measurement of F₂^{charm} sensitive to nuclear gluon density in e-A
 - III. Hadronisation and energy loss in cold nuclear matter
 - Nuclear modification and quark mass dependence
- A future EIC promises unprecedented precision in charm (and beauty)
 - Reconstruction challenging due to short decay lengths \sim 100 μm
 - Likely to place strongest constraints on the tracker design
 - Potential importance of low-p_T (standalone) tracking

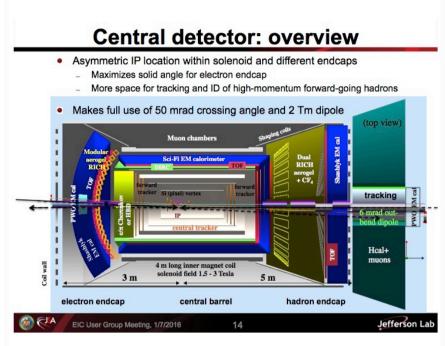
A. Accardi et al., Eur. Phys. J. A (2016) 52:268


Open charm reconstruction

Signature is displaced (secondary) decay vertex

Particle	Decay	Branching	c τ [μ m]
D^0	K ⁻ π ⁺	3.9%	123
D ⁺	K ⁻ π ⁺ π ⁺	9.5%	311
D*+	$D^0\pi^+_{slow}$	67.7%	


$$D^{*+} \longrightarrow D^0 \pi^+_{slow} \longrightarrow (K^- \pi^+) \pi^+_{slow}$$


- Requires excellent impact parameter resolution in $r-\phi$ and z
 - Dominated by position and resolution of innermost tracking layer
 - Close as possible to beam pipe (caution: radiation environment)
 - Highest possible spatial resolution (small pixels)

5)

Background: EIC Detector Concepts

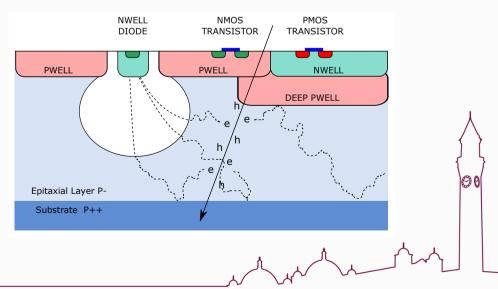
Alexander Kiselev

Pawel Nadel-Turonski

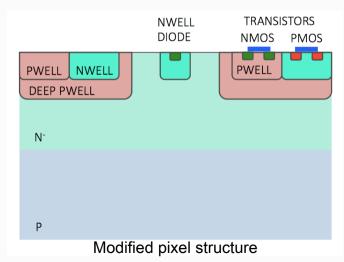
Based on **ALICE ITS** upgrade

Several technology options, e.g. Belle II DEPFET-based pixel SVD

- Si vertex and tracker detectors in central and forward regions
- Seek high resolution, high s/n, low mass, low power solution
 - applicable to both eRHIC and JLEIC


- Aim: to demonstrate high spatial resolution in a fully depleted sensor
 - Advantage of depletion = charge collection by drift
 - → larger Q, fast collection, small cluster multiplicity, rad. hardness
- Starting point: ALPIDE sensor (ALICE ITS)
 - Partially depleted; charge collection in part by drift
 - Small collection electrode = low detector capacitance
 - → low power, low noise, low crosstalk, fast readout

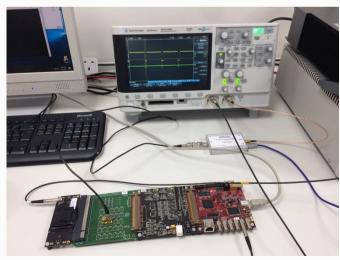
ALPIDE sensor


- 0.18 μm CMOS TowerJazz
- 28 x 28 μm² pixel pitch
- <2 μs time resolution
- Power density < 50 mW cm⁻²
- 50 kHz interaction rate (Pb-Pb)
- 200 kHz interaction rate (pp)

ALICE-ITS

Inner layer thickness = $0.3\% X_0$ Outer layer thickness = $0.8\% X_0$

- R&D strategy: maximise Q/C
 - Investigating two commercial HV/HR-CMOS technologies to achieve larger depleted volume: TowerJazz and LFoundry
- TowerJazz "modified" process
 - CERN-TowerJazz (CERN-TJ) collaboration: 180 nm process with additional planar junction deep in the epitaxial layer
 - First results* indicate full depletion; larger signal with faster and more uniform charge collection wrt standard process
 - Small collection electrode, so low detector capacitance like ALPIDE



We believe this technology is a strong contender for a dedicated **EIC MAPS prototype**

*H. Pernegger et al., First tests of a novel radiation hard CMOS sensor process for Depleted Monolithic Active Pixel Sensors, 2017 JINST 12 P06008.

- CERN-TJ investigator chip now available for testing in Birmingham
 - Designed to study charge collection properties and detection efficiency
 - More than 100 pixel matrices (10 x 10 pixels)
 - Range of pixel sizes relevant to both EIC barrel and disks
 - 20 x 20 μm² to 50 x 50 μm² pixels
 - Simple follower-based (analogue-only) readout
 - Characterisation of the sensor will be our focus in FY18
 - Focusing on matrices with small pixels

- Other developments
 - 1. Prototype submitted in May in TowerJazz standard process
 - Part of a separate Digital ECal (DECAL) project (UK funded PRD)
 - Uses larger pixels and multiple collection electrodes to match requirements of DECAL chip design
 - Not presently being considered for EIC studies
 - 2. Submission of test structures in TowerJazz modified process
 - Multi-Project Wafer submission with CERN in July
 - Consists of larger pixels with multiple small collection electrodes to complement investigator chip structures
 - 3. RD50 LFoundry submission expected by end of the year
 - Matrices with improved time resolution (in-pixel TOA and TDC)
 - Test structures with pixels down to 20 x 20 μm²
 - But, large electrode (electronics sits within the collecting n-well)

Options 2. and 3. are useful for evaluation purposes

→ Large Q, but also larger C than single small electrode

ectrode

- Work plan for FY18
 - 1. Characterisation of the CERN-TJ investigator chip
 - Parameters to evaluate: signal amplitude and response time
 - Tests with radioactive sources (⁵⁵Fe and ⁹⁰Sr) and laser eTCT setup Calibration, measurement of depletion width, uniformity of charge collection between pixels
 - Irradiations at MC40 cyclotron with 28 MeV protons
 - Possible participation in test beam with colleagues at CERN to study detection efficiency
 - 2. TCAD simulations
 - Evaluate optimal electrode configuration, epitaxial layer resistivity, with inputs from results of characterisation
 - 3. EIC MAPS specifications and design
 - Define specifications for EIC specific sensor
 - Possibly start discussing design options with chip designer

eRD18 and eRD16: Toward an EIC specific sensor

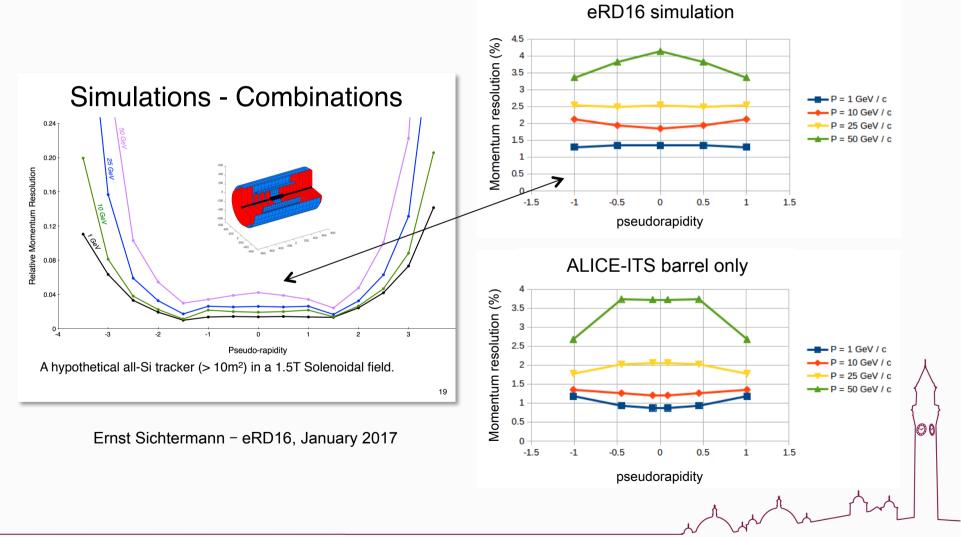
- Factors affecting readout architecture
 - 1. Interaction rate and pixel occupancy
 - eRHIC: coll freq = 28.2 MHz (35.5 ns bunch spacing)
 - JLEIC: coll freq = 476 MHz (2.1 ns bunch spacing)
 - 2. Time resolution
 - Limited by pre-amp rise time (analogue power density)
 - Important to have small detector capacitance

	ALPIDE	MALTA	HGTD
Pixel size	28 x 28 μm²	36 x 36 μm²	1 x 1 mm ²
Analogue power	5-6 mW/cm ²	50-60 mW/cm ²	100 mW/cm ²
Time resolution	2 μs	25 ns	40 ps

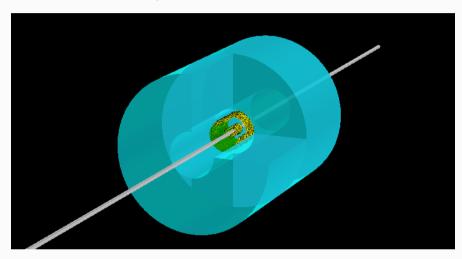
3. Readout speed

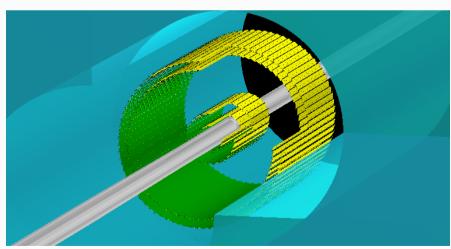
- Triggered versus untriggered readout, on-chip buffering, speed of output links, clock distribution – all drive digital power density
- → Time resolution and readout speed impact mass and granularity

The grantiality


eRD18 and eRD16: Toward an EIC specific sensor

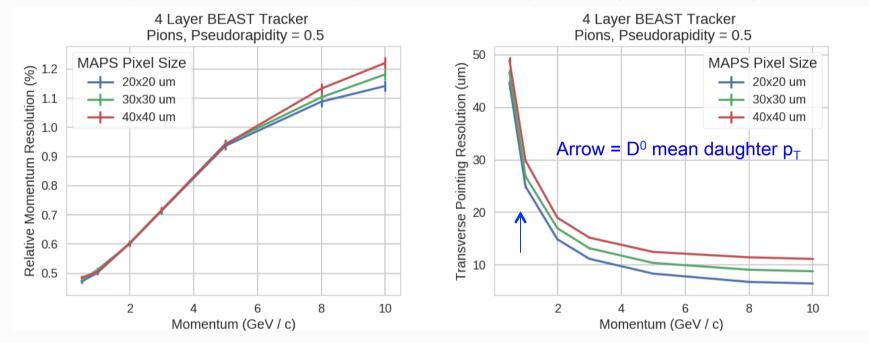
- EIC sensor readout
 - Two possible scenarios depending on required tracking performance
 - 1. Design sensor with required spatial and time resolution in all layers
 - 2. Develop a faster, lower granularity sensor for the outermost layer
 - Possible synergy with eRD6 Tracking Consortium
 - Joint interest in developing a fast timing / trigger layer
- Future roadmap in collaboration with eRD16
 - Two video meetings to discuss developments and future plans
 - Collaborating on layout simulations, using the same geometry descriptions
 - Divide work according to physics observable (electrons vs heavy flavour)
 - Placement of first disk layer(s) may have impact on barrel performance
 - Iterate toward a final set of requirements for barrel and disks in FY18
 - Aim to design and submit an EIC specific sensor prototype in FY19
 - Potential to build a silicon (MAPS) consortium at that stage


- Planned for new postdoc to work on simulations (and sensor tests)
 - 0.5 FTE funded through EIC R&D funds
 - Post filled by Dr. Sam Bailey; started on 1st March
 - Focus on simulations in EicRoot software framework
- Initial tests with standalone tracker to make connection with eRD16
 - Studied electrons with two barrel configurations:
 - Default 4-layer barrel (2.3, 4.7, 14, 16 cm)
 - ALICE-ITS-like 7-layer barrel (2.3, 3.1, 3.9, 20, 25, 34, 39 cm)
 - All layers 0.3% X₀; 6 μm spatial resolution (20 μm pixels)
- Subsequent tests have focused on combined Si barrel plus TPC
 - Studied pions (kaons and protons) from 500 MeV/c to 10 GeV/c
 - Various barrel configurations plus default TPC specification
 - 4-layer barrel, default geometry, 20-40 μm pixels
 - 3, 4 and 5-layer barrels, 30 μm pixels
 - 4 and 5-layer barrels with 350 μm pixels in outer layer (on-going)


lyer (on-going)

Results: electrons in a standalone silicon tracker

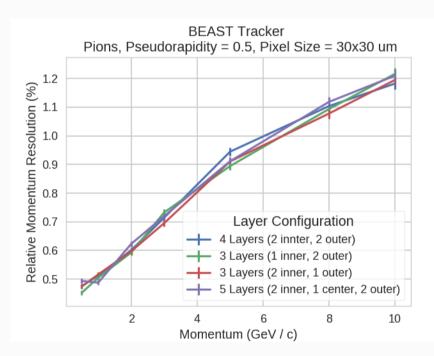
Geometry: TPC + VST + beam pipe + magnetic field (B = 0.5 T)

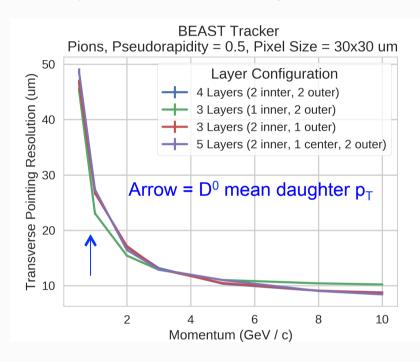


TPC parameters
Inner radius = 20 cm
Outer radius = 80 cm
250 μm position resolution

VST parameters Layer #1 radius = 2.3 cm Layer #2 radius = 4.6 cm Layer #3 radius = 14 cm Layer #5 radius = 16 cm 30 x 30 μ m pixels 0.3% X_0 per layer

Beam pipe parameters
Material = beryllium
Outer radius = 1.8 cm
Thickness = 0.8 mm


Results: pions; eta = 0.5; 3 pixel sizes: 20 μm, 30 μm and 40 μm



Relative momentum resolution (%) versus momentum

- Impact parameter resolution (μm) in transverse (r-φ) plane versus momentum
- Modest improvement in impact parameter resolution for all p_T
 - Dominated by resolution of innermost layer

Results: pions; eta = 0.5; pixel size = 30 μm; 3, 4 and 5 layers

Relative momentum resolution (%) versus momentum

Impact parameter resolution (μm) in transverse (r-φ) plane versus momentum

- Little sensitivity to the number of layers
 - Slightly better impact parameter resolution with one inner layer

- Work plan for FY18
 - 1. Tracker characterisation
 - Complete study of single track momentum resolution and impact parameter resolution based on different assumptions on the pixel dimensions and number and thickness of tracking layers
 - 2. Tracker optimisation
 - Optimise separation of tracking layers
 - Explore tradeoffs in scenarios with different pixel sizes and layer thicknesses in different layers
 - e.g. fast timing layer
 - Study standalone tracking performance at low p_T

Scope and deliverables

Scope

- Second year of a two-year initial design study
- By the end of FY18 we aim to have defined a set of requirements necessary to design an specific EIC sensor

Deliverables

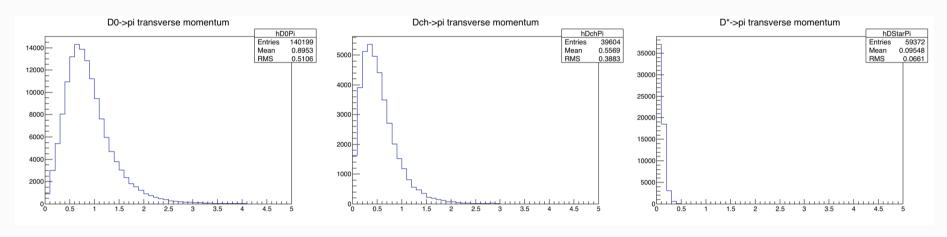
- WP1: Characterisation of pixel matrices in CERN-TJ demonstrator
- WP1: TCAD simulations to optimise pixel geometry and aspect ratio
- WP1: Begin to explore charge collection properties and timing characterisatics with input from sensor designer
- WP2: Complete study of single track momentum resolution and impact parameter resolution based on different assumptions on the pixel dimensions and number and thickness of tracking layers
- WP2: Optimise tracking layer separation and explore tradeoffs in scenarios with different pixel dimensions in different layers
- eRD18 with eRD16: Initial sensor specifications for disks and barrel

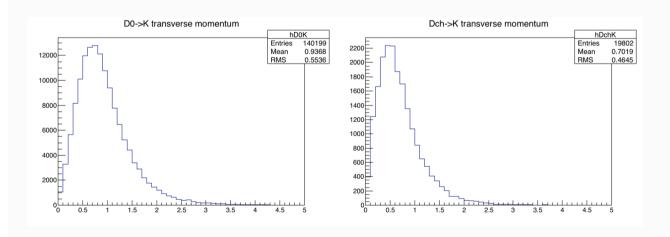
Resources summary

Existing resources

- Staff effort: Gonella (0.2 FTE), Jones (0.1 FTE), Newman (0.05 FTE),
 Allport (0.05 FTE)
- Access to CERN-TJ investigator chip
- PhD student (Håkan Wennlöf) from October 2017
- Access to MC40 cyclotron for irradiation studies

Requested resources


- 1. PDRA (1 FTE) = £107k (\$150k) to work on WP2 (60%) and WP1 (40%)
- 2. Travel $(4 \times 2 \times £1,250) = £10k ($14k)$


Scenario	PDRA	Travel	Total (GBP)	Total (USD)
100%	£107,394	£10,000	£117,394	\$164,352
80%	£83,915	£10,000	£93,915	\$131,481
60%	£60,436	£10,000	£70,436	\$98,611

Note: Input from sensor designer might be useful toward end of the project

Backup: Pythia simulations

■ Pythia e-p at \sqrt{s} = 145 GeV (21 GeV electrons + 250 GeV protons)

